Sumsets
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 863 Accepted Submission(s): 339
Problem Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 1) 1+1+1+1+1+1+1 2) 1+1+1+1+1+2 3) 1+1+1+2+2 4) 1+1+1+4 5) 1+2+2+2 6) 1+2+4 Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
Source
Recommend
teddy
分析(转):
设a[n]为和为 n 的种类数;
根据题目可知,加数为2的N次方,即 n 为奇数时等于它前一个数 n-1 的种类数 a[n-1] ,若 n 为偶数时分加数中有无 1 讨论,即关键是对 n 为偶数时进行讨论:
1.n为奇数,a[n]=a[n-1]
2.n为偶数:
(1)如果加数里含1,则一定至少有两个1,即对n-2的每一个加数式后面 +1+1,总类数为a[n-2];
(2)如果加数里没有1,即对n/2的每一个加数式乘以2,总类数为a[n-2];
所以总的种类数为:a[n]=a[n-2]+a[n/2];
#includeusing namespace std;int a[1000000];int main(){ int i,n; a[1]=1; a[2]=2; for(i=3;i<=1000000;i++) { if(i%2==0) { a[i]=a[i-2]+a[i/2]; if(a[i]>999999999) a[i]%=1000000000; } else a[i]=a[i-1]; } while(~scanf("%d",&n)) { printf("%d\n",a[n]); } return 0;}